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Abstract: This paper develops coordinates and layouts for graphs that rep-
resent statistics indexed by repetitive letter sequences. The need for such
graphics arises in a variety of applications. The examples in this paper con-
cern sequences of nucleotides, such as AGTGGC, and sequences of amino
acids.

1 Introduction

In contrast to maps that represent statistics indexed by geospatial coordi-
nates, the development of graphics methodology for statistics indexed by
repetitive letter sequences has been modest. One interesting exception is the
sequence logo display [13] that can show a sequence of categorical frequen-
cies. Statistical graphics methods for categorical data [7], [8] are relevant for
relatively simple multivariate combinations but so far have seen little use in
nucleotide and amino acid indexing examples.

Journal articles typically show short tables with one column giving the
sequence of letters and one more column providing statistics. The rows are of-
ten sorted by one of the statistical columns. Both the one-dimensional linear
ordering and the restriction to a modest number of rows reduce the opportu-
nity to see patterns that may lead to new understanding. One-dimensional
linear orderings produced by clustering, the first principal component, min-
imal spanning tree traversal, space filling curves or other methods do not
exploit the human ability to see multivariate patterns based on 2-D and 3-D
connectedness and proximity. Connectedness and proximity are among the
most powerful of human perceptual grouping principles [18]. Thus this pa-
per seeks to develop 2-D and 3-D coordinates for representing letter-indexed
statistics.

The graphical design objectives include providing an overview along with
interactive focusing and re-expression methods. For long sequences, com-
binatorics grow exponentially with sequence length and quickly lead to an
overwhelming number of statistics. Overviews require substantial statistical
summarization. The modest research here concerns developing representa-
tions for short sequences.

One approach not investigated here is the use of pixel oriented visual-
ization [9]. It is possible to encode univariate statistics on all nucleotide se-
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quences of length ten (410 = 1024×1024) in a pixel plot on a 1280×1024 mon-
itor. Large high resolution prints will handle somewhat longer length se-
quences. Interactive pan and zoom methods can support layouts for longer
sequences but showing all the values at once is problematic. The color of
individual pixels is hard to identify with increased monitor resolution. The
use of multiple monitors cannot keep up with the exponentially growing com-
binations.

Layout details are an issue. A convenient layout for a pixel plot may
use lexicographic order for the first half (last half) of the sequence along the
x-axis (y-axis). A following sectional on fractal coordinates provide another
approach to layouts. In both cases indexing regularity help to keep the ana-
lyst oriented with interpreting the plots. However, indexing that is convenient
for human memory may be poor at bringing out meaningful patterns. Maps
often work well for showing geospatially-indexed statistics because geospa-
tial attributes often have locally similar values. This applies to covariates as
well as to the primary variables of interests. Proximity that reflects scientific
relationships can be crucial to seeing meaningful patterns.

The layouts in this paper have limitations because they are primarily
based on indexing regularity. However, the layouts provide some opportuni-
ties to rearrange letter order or axis placement either for perceptual simplifi-
cation (such as reducing line crossings) or for incorporating physical/chemical
properties (such as hydrophobicity) of the sequence constituents. Interest-
ingly these two objectives can lead to the same display. Axes ordering prob-
lems are in general NP complete [1]. While many people prefer 2-D lay-
outs, 3-D layouts not only allow better preservation of interpoint distances
of higher dimensional points, they also provide more opportunities arranging
axes. Thus the layout options are not as restrictive as might be assumed at
first glance.

This paper develops three approaches to constructing coordinates while
mentioning some alternatives along the way. Three different data sets mo-
tivate the development of the coordinates. Section 2 describes self-similar
coordinates at different scales. Section 3 concerns self-similar coordinates
at the same scale with focus on 3-D extension of parallel coordinates. The
application shows cell statistics from a 4-D table. Section 4 illustrates the
use of simple additive vector coordinates for showing all quadruples of amino
acids (ignoring order). This approach can be useful despite some substantial
overplotting problems. The section also hints at other 2-D layouts that avoid
overplotting. Comments appear along the way about software and interactive
tools used for rendering.

2 Self-similar coordinates, dimensionality, and fractals

The regularity of self-similar coordinates speeds learning and helps analysts
devote short-term memory to other issues. A natural approach to developing
multivariate coordinates encodes letters as integers and then uses Cartesian
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coordinate product sets with a coordinate for each position in the sequence.
With A=1, C=2, G=3, and T=4 the sequence ATCG is located at (1, 4, 2, 3).
The similar treatment of each position in the sequence and the same ordering
of nucleotides for each axis motivates the description as a self-similar coor-
dinate system. With coordinates in hand, multivariate glyphs can encode
multivariate statistics associated with the sequence. The most immediate
problem with this approach is that straightforward graphical representation
of points is only available through three dimensions.

2.1 Rendering approaches and difficulties

There are many approaches to rendering multivariate data with more than
three coordinates. As further mentioned in Section 4, nested coordinate plots
provide one approach. Another approach encodes some coordinates as glyph
features. For example with four coordinates the ray angle of a stereo-ray
glyph can encode the value for the fourth coordinate [3]. Ray length and
color can encode more coordinates. Good perceptual accuracy of extraction
for the angle encoding and modest use of “ink” make glyph a good choice for
revealing hyperplanes in 4-D data and other tasks. However in the current
context all 3-D coordinate glyphs lose self similarity when rendering more
than three coordinates.

Before developing 3-D coordinates to represent sequences longer than
three, brief comments about limits and merits of 3-D graphics are appropri-
ate. Many people prefer 2-D graphics to 3-D graphics. Common arguments
for 2-D rendering are that people only see surfaces, occlusion is a problem
in 3-D and that motion and/or binocular parallax depth cues are impossible
or inconvenient to convey on a printed page. The position here is that many
humans are endowed with the cognitive ability to see 3-D images based on
motion and binocular parallax. They should be allowed to utilize this capa-
bility whenever it helps in dealing with difficult scientific challenges. Three
dimensions provide a richer environment for conveying relationships and pro-
duce less distortion than 2D and 1D plots when scaling multivariate data into
lower dimensions.

2.2 Weighted vector addition and fractals

Vector addition provides an enticing starting point for developing 3-D coor-
dinates. For nucleotides, associate each letter with a vector from the origin
to the vertices of a tetrahedron. Let A=(1,1,1), C=(1,-1,-1), G=(-1,1,-1),
and T=(-1,-1,1). Then using of vector addition for each letter in a sequence
produces a 3-D coordinate for representing the sequence. However, vector ad-
dition is commutative so all permutations of the same set of letters yield the
same point. When the goal is to represent all hexamers (six letter sequences)
the result should be 46 = 4096 distinct plotting points but rather 84 points
corresponding with the multinomial terms in multinomial (A + C + G + T)6.
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Figure 1: Fractal coordinates for nucleotide sequences. Sphere size (and
color) show counts. Small rectangles show the plotting locations of low count
spheres.

Weighted vector addition provides an approach that can produce unique
points for plotting. Consider power of two weights 2(6−i)/63 where i is the po-
sition along the sequence and the weights sum to 1. The sequence ACGTTC
then maps into the point (.555, .270, .206).

Rendering and rotating reveals the coordinates creating a Sierpinski Gas-
ket similar to one shown in Mandelbrot [11]. The self-similarity provides
means of decoding the indexing of a point based on its location. A point
in the large tetrahedron toward the C attractor has C as the first letter. If
a point within this C tetrahedron is as close as possible to the T attractor,
then all the remaining letters are T. A tetrahedron zooming widget can reveal
the sequence of conditioning letters. Similarly, zooming can be controlled by
entering the first letters of the sequence.

A delight occurs when rotating the gasket. In some orthographic pro-
jections the appearance is a square lattice. Construction using a pair of
coordinates indicated earlier makes this clear. However, this is not intuitive
from looking at the gasket in other views. The 2-D layout is also self-similar
and extends immediately to the 10-mer by 10-mer pixel display mentioned
earlier.
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The motivation for Figure 1 was an early effort to find transcription reg-
ulation docking sites for the Stanford yeast genes [5]. The study clustered
genes based on their expression levels. This produced groups of seemingly
co-regulated genes. For the genes in a group, the 300 (nucleotide)-letter re-
gions upstream of the protein-coding regions of the genes were scanned with
a sliding window of length six. This produced the basic statistics on the
occurrence frequencies of the different hexamers encountered. The sphere
glyphs in the plot encode counts using size and color. A glance reveals that
most of the higher count hexamers appear along the AAAAAA to TTTTTT
edge. Relatively little was known about transcription regulation when the
Stanford yeast data was first made available and the statistics for Figure 1
was produced. Today many transcription regulation sites of various lengths
have been identified and the regions as far as 800 nucleotides upstream are
relevant for some genes. The plots could be improved by obtaining better
data and by highlighting the hexamers known to be associated with tran-
scription regulation.

Different kinds of software can produce figures similar to Figure 1. With
a little work most standard statistical software can produce projected static
views. Software that provides rotation, filtering and brushing, such as Xgobi
and CrystalVision, provide better visualization environments. Efforts to pro-
duce multilayer 3-D visualization methodology similar to GIS software led
to the development of software called GLISTEN (geometric letter-indexed
statistical table encoding). GLISTEN supports point and path layers that
are used in the graphs below.

Efforts to extend the fractal layout to amino acids were not very suc-
cessful. One generalization used the 20 face centers of the icosahedron as
attractors and adapted the weights so the clouds of points associated with
each of the 20 attractors would be separated. Only three letter sequences
were shown to restrict the view to 203 = 8000 points. The high density of
points for the smallest scale icosahedra and the occlusion, partly due to more
points, made this layout less desirable.

2.3 Connecting coordinates for longer sequences

Paths that connect points can represent longer letter sequences. For example,
a path through three points in Figure 1 can represent nucleotide sequences
18 letters long. The use of paths is advantageous since occlusion problems do
not grow too quickly. Experimenting with translucent triangles and tetrahe-
dra for showing triples and quadruples were not successful due to inability to
see through much more than two layers.

Paths can encode statistics using path thickness and color. The path
direction also needs to be encoded unless the sequence is explicit or intended
to be reversible. There are limitations to this approach. If the data contains
a large number of sequences, overplotting precludes providing an overview.
Filtering widgets can then help to cope with very large databases. A second
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Figure 2: Capless hemisphere coordinates. Sphere size shows counts from
1-D table. Path thickness, color, and filtering enable focus on high counts
from 2-D tables.

limitation is that a single coordinate system with each point representing
a sequence of p letters does not accommodate sequence lengths that are not
a multiple of p. A third issue that especially applies to fractal coordinates is
that the apparent distance between paths is heavily influenced by the subset
of coordinates receiving heavy weight. Fourth, there can be ambiguity when
multiple paths go through the same point. Still, such displays can often turn
up meaningful patterns that are otherwise missed.

3 Parallel coordinates escape the plane

Parallel coordinates (PC) plots also provide self-similar representations. An-
alysts are increasingly using these plots to show multivariate data and to
provide interactive input in a multivariate context. A limitation of parallel
coordinates is the lack of a natural way to connect non-adjacent axes. Fig-
ure 2 shows a capless hemisphere coordinate system that partially addresses
the problem. The coordinate system encodes the 20 natural amino acids as
longitude and nine positions along a sequence as latitude. The gap create
perceptual groups that facilitate focusing on subsets. The path connecting
L2 and L9 and the path between L2 and its neighbor L3 do not overlap due
to the hemisphere curvature. The 3-D setting with curvature means the axes
are not longer parallel, but there is a simple mapping to parallel coordinates.

The data motivating Figure 2 comes from a database of peptides [2], or
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in this case amino acid sequences of length 9 known to bind to important
immune molecules called HLA. This binding reaction is crucial in initiating
the recognition by the human body of peptides from ’foreign’ sources such
as viruses or cancer. When a T-cell finds the peptide-HLA combination on
the target cell surface, it activates coordinated processes for the purpose of
clearing the infected cells. The immune system is an incredibly complex
’search-and-destroy’ system. Autoimmune diseases are examples of false pos-
itives, where the immunity is mistakenly directed toward normal tissue. An
example of an immune system false negative is the inability to detect and clear
certain infections. Bioinformatic prediction of peptides from pathogenic pro-
teomes such as HIV has emerged as a valuable tool in vaccine development
and cancer immunotherapy [16].

The data used in the example concerns peptides binding to the HLA A-2
molecule (a specific form among many different genetic versions of this HLA).
Most of the binding peptides listed were 9-mers. Typical statistics would be
just the counts of amino acid for each of the nine positions. Such can be
represented by sequence logo displays or as sequence of bar charts. The
sphere size and color (when not shown in gray level) in Figure 2 convey this
information just as effectively. The paths in Figure 2 encode counts from the
nine choose two (36) two-way (20×20) tables. A filtering widget removed all
but the highest count cells. The counts are encoded by the line color (when
not shown in gray level) based on a color ramp. The layout also requires
some sorting considerations. Putting the hydrophobic amino acids adjacent
to each other reduces line crossing.

Since paths can have more than one line segment, the capless hemisphere
coordinate framework can also represent statistics from higher dimensional
tables. The three-segment paths in Figure 3 show high count (frequency)
cells from the nine choose four (126) four-way (20 × 20× 20× 20) tables (see
also [10]). The lowest count path shown goes through L2, A7, A8, and V9
as might be expected from the 1-D margin counts. There are large counts
for L2 and V9. The rest of the high frequency paths shown go through G4.
This is not apparent from the 1-D margins counts.

4 Additive vector coordinates and overplotting

When the ordering of letters in a sequence is not important, the additive
vector coordinate approach mentioned in Section 2 is more appropriate.
A 3-D tessellation application provides such data [15], [17]. The data arise
from tessellating the space of proteins based on the location of their backbone
Carbon alpha atoms. The Delauney tessellation yields tetrahedra indexed by
the associated amino acid residues at the vertices. The ordering of the amino
acids for a tetrahedron is not considered important. There are (20 − 1 + 4)
choose 4 or 8855 distinct tetrahedra (see [6] for a discussion of classical oc-
cupancy problems.)

Figure 4 provides an additive vector coordinate example with the vec-
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Figure 3: Paths with three segments show frequently occurring quadruples,
i.e. high counts from 4-way tables.

tors point to twenty points evenly spaced around a circle. Again point size
and color encode the counts, and dynamic filtering has removed low count
tetrahedra. High count patterns jump out. One is a circle involving three
Cysteins and one each of the amino acids.

While Figure 4 reveals a lot of structure, there are at least three problems
worth noting. First, over some 2000 points are overplotted. This is partly
related to symmetric construction with equal angles between vectors. Second,
zooming reveals many points that to close together to see closer in a overview.
Third, for over 4000 points involving four distinct amino acids the connection
between plotting location and the indexing is almost impossible to untangle
without mouseovers. Figure 4 is mostly useful for points in an outer annulus
of the circle.

There are several possibilities for alternative views. It is possible to show
a statistic encoded by color in a casement display of 204 = 160000 points [12].
In this example the casement display is a 20 × 20 layout of 20 × 20 matrices.
However it remains desirable to study plots with a factor of 18 less points.
The 8855 points can be placed in a 4-D simplex. (See also pentagonal num-
bers [4].) Space prohibits showing a layout composed of two-dimensional
slices of the simplex. There is also a layout in the plane for all tetrahedra
with 2 or more of the same amino acid. While this layout involves dupli-
cates the regularity makes the layout easier to study. Such a layout can
provide a starting point for drilling down to conditioned views of the 1-1-1-1
combinations.
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Figure 4: Vector addition coordinates. Sphere size (and color) encode statis-
tics for protein tetrahedra. Small rectangles show plotting locations of low
count spheres.

5 Closing remarks

Just as map projections have been devised to serve different purposes, co-
ordinates systems for encoding statistics can be developed to serve different
purposes. A worthy goal is to develop coordinates systems with a regularity
that minimizes memory burdens and helps analysts keep oriented with re-
spect to the coordinates. A tension arises when one desires to show complex
relationships faithfully in some abstract sense while keeping the relation-
ships cognitively accessible. In many cases there are no easy answers and
the graphics are a compromise. Still, analysts can make discoveries from
imperfect graphs. It is worthwhile to consider graphics that lean toward
the cognitive accessibility and work toward incorporating as much scientific
structure as possible options. Accessible graphics enable analysts to look
and, if they look, they have a chance to see.
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